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Abstract

Purpose: Inefficient homing of adoptively transferred cyto-
toxic T lymphocytes (CTLs) to tumors is a major limitation to
the efficacy of adoptive cellular therapy (ACT) for cancer.
However, through fucosylation, a process whereby fucosyl-
transferases (FT) add fucose groups to cell surface glycopro-
teins, this challenge may be overcome. Endogenously fucosy-
lated CTLs and ex vivo fucosylated cord blood stem cells and
regulatory T cells were shown to preferentially home to
inflamed tissues and marrow. Here, we show a novel approach
to enhance CTL homing to leukemic marrow and tumor tissue.

Experimental Design: Using the enzyme FT-VII, we fuco-
sylated CTLs that target the HLA-A2–restricted leukemia
antigens CG1 and PR1, the HER2-derived breast cancer
antigen E75, and the melanoma antigen gp-100. We per-
formed in vitro homing assays to study the effects of fuco-

sylation on CTL homing and target killing. We used in vivo
mouse models to demonstrate the effects of ex vivo fucosyla-
tion on CTL antitumor activities against leukemia, breast
cancer, and melanoma.

Results: Our data show that fucosylation increases in vitro
homing and cytotoxicity of antigen-specific CTLs. Further-
more, fucosylation enhances in vivo CTL homing to leukemic
bone marrow, breast cancer, and melanoma tissue in NOD/
SCID gamma (NSG) and immunocompetent mice, ultimately
boosting the antitumor activity of the antigen-specific CTLs.
Importantly, our work demonstrates that fucosylation does
not interfere with CTL specificity.

Conclusions: Together, our data establish ex vivo CTL fuco-
sylation as a novel approach to improving the efficacy of ACT,
which may be of great value for the future of ACT for cancer.

Introduction
The success of adoptive cellular therapy (ACT) for cancer

has been impeded by the paucity of T cells' homing to tumor
tissue (1, 2). A number of molecules, including T-cell adhesion
molecules, chemokine receptors, and selectins, have been shown
to play important roles in the homing of T cells to malignant

tissues (3–5). Of these, selectins appear to be the major molecules
involved in T-cell homing into tumors and inflamed tissues (6–
10). T-cell expression of selectin ligands is critical for T-cell efficacy
in providing long-term protection against tumor recurrence.
Selectins are a family of three C-type lectins (P-selectin, E-selectin,
and L-selectin) expressed by hematopoietic, immune, and endo-
thelial cells.

Selectins have been shown to play a role in T-cell function,
including trafficking (6, 7). They bind to the tetrasaccharide sialyl-
Lewis X (sLeX), which decorates certain proteins that are expressed
on T cells and tumor endothelial cells. sLeX is the moiety found on
selectin ligands such as PSGL-1 and CD44, which are the critical
binding units that mediate the interaction between circulating
cells with E- and P-selectins expressed on vascular endothelial
cells and inflamed tissues (11, 12). This cooperative binding leads
to the attachment, rolling, and adherence of cytotoxic T lympho-
cytes (CTLs) to vascular endothelial cells, supporting the first
critical step in the homing process.

sLeX formation is controlled in part by the expression of
fucosyltransferases (FT) that attach a terminal fucose to trisac-
charide acceptor molecules. In T cells, this activity is regulated
by FT-IV and FT-VII (13). Fucosylation of T-cell surface mole-
cules has been shown to facilitate the migration of T cells into
tissues (13–18). In contrast, defects in fucosylation contribute
to decreased T-cell homing (19–21).

Currently available data highlight the importance of endoge-
nous fucosylation of selectin ligands in T-cell homing and
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trafficking; however, to date, ex vivo fucosylation has been studied
only in the setting of allogeneic stem cell transplantation (allo-
SCT; refs. 22–24). After validating the effects of ex vivo fucosylation
in animal models, one study showed that ex vivo fucosylation of
cord blood hematopoietic stem cells shortened time to engraft-
ment following allo-SCT in 22 patients (24). Moreover, Parmar
and colleagues showed that ex vivo fucosylation of regulatory T
cells enhances homing into inflamed tissues affected by graft-
versus-host disease (GvHD) in a xenograft mouse model (25). In
these studies, fucosylation was achieved by a simple reaction
involving a short incubation of cells with the substrate guanosine
diphosphate-fucose (GDP-fucose) and FT-VI (TZ-101: FT-VI þ
GDP fucose). Because FT-VII fucosylates CTLs more efficiently
than FT-VI, we used FT-VII (TZ102: FT-VII þ GDP fucose) to
fucosylate CTLs ex vivo in this study (22–25). Incubating cells with
TZ102 results in an enzymatically mediated, site- and stereo-
specific addition of fucose to form the tetrasaccharide sLeX.

We hypothesized that fucosylation of antigen-specific CTLs in
the setting of leukemia and breast cancer enhances their homing
into tumor tissues and their antitumor activities. Using CTLs that
target the human leukemia antigens PR1 and CG1 (PR1- and
CG1-CTLs; refs. 26–30), the human breast cancer antigen E75
(E75-CTLs; refs. 31, 32), and the mouse melanoma antigen gp-
100 (pmel-1 CD8þ T cells; ref. 33), we show that fucosylation of
CTLs results in: (1) increased migration and cytotoxicity of anti-
gen-specific CTLs following fucosylation using in vitro assays; (2)
favorable changes in the expression of CTL adhesion molecules,
costimulatory receptors, CTL cytolytic granules, and CTL:target
synapse formation; (3) enhanced killing of leukemia, breast
cancer, and melanoma by CG1-CTLs, PR1-CTLs, E75-CTLs, and
pmel-1 CD8þ T cells in vivo; and that (4) fucosylation does not
alter the specificity of the antigen-specific CTL for their targets and
does not increase homing of CTLs to normal mouse tissue.

Materials and Methods
Cells and cell culture

The U937 (histiocytic leukemia), SKBR3 (breast cancer), and T2
(HLA-A2þ T/B-cell hybridoma) cell lines were obtained from the

American Type Culture Collection (ATCC). U937 and T2 cell lines
were grown in RPMI-1640 supplemented with 10% FBS (Gemini
Bio-Products), 100 U/mL penicillin, and 100 mg/mL streptomycin
(Cellgro); SKBR3 breast cancer cell line was grown in DMEM
supplemented with the same. All cell lines were cultured and
maintained in 5% CO2 at 37�C. The HLA-A2� cell line U937 and
the HLA-A2low SKBR3 (SKBR3 is genotypically one allele HLA-A2
positive, but phenotypically HLA-A2 low) were transduced with
HLA-A�0201 (i.e., HLA-A2) using lentiviral transduction as pre-
viously described (28, 34). Cell lines were validated using short
tandem repeat DNA fingerprinting by our institutional sequenc-
ing facility. After thawing, cells were used for experiments within
five passages. Mycoplasma testing was performed quarterly using
the MycoAlert Kit (Lonza Inc.). Patient peripheral blood and
apheresis samples were obtained through an Institutional Review
Board–approved protocol.

Peptide-specific CTL generation
CG1-CTLs, PR1-CTLs, and E75-CTLs were generated using the

modified dendritic cell (DC)–based CTL expansion method (35).
HLA-A2þ peripheral blood mononuclear cells (PBMC) from
healthy donors were isolated by Histopaque (Sigma Aldrich)
density gradient cell separation. An enriched population of CD14
monocytes was prepared by magnetic bead depletion of CD2,
CD19, and CD8-expressing cells (Dynal-Invitrogen). Enriched
monocytes were then cultured in Macrophage Serum-Free Media
(Gibco-Invitrogen) with 100 ng/mL GM-CSF and 100 ng/mL IL4
(R&D Systems). TNFa (R&D Systems) was added at 10 ng/mL
after 48 hours to mature the DC population. Antigen-specific
CD8þ T cells were prepared from PBMCs by supplementing
complete media with 10 ng/mL of IL7 (R&D Systems) and pulsing
the cells with 40 mg/mL of peptide (CG1-FLLPTGAEA/PR1-
VLQELNVTV/E75-KIFGSLAFL, Biosynthesis). DCs were harvested
on day 5 and pulsed with the above peptides for 2 hours. Once
pulsed, the DCs were then cocultured with autologous CD8þ T
cells in complete media containing 10 ng/mL of IL7 and 50 IU/mL
of IL2. All cultures were maintained in a humidified incubator in
5% CO2 at 37�C. On day 14, CTLs were harvested and used in in
vitro assays and in vivo studies. Prior to use, CTLs were passed
through a negative selection column (MACS Miltenyi Biotec-
CD8þ T Cell Isolation Kit).

Fucosylation of CTLs
Ex vivo expanded T cells were incubated in fucosylation solu-

tion: 40 mg/mL of FT-VII in 1 mmol/L GDP Fucose in PBS with 1%
human serum albumin (Targazyme Inc.) at room temperature for
30 minutes, as previously described (25). FT-VII was used because
it fucosylates CTLs at a much higher efficiency than FT-VI. Cells
were then resuspended in PBS. Fucosylation was confirmed using
flow cytometry (LSR Fortessa; BD Biosciences) after the cells were
stained with the FITC-conjugated HECA-452 antibody (BD Bios-
ciences), which targets cutaneous lymphocyte antigen (CLA),
shown to be sLeX on PSGL-1 (14).

CTL migration assay
CTL migration was assessed using a CytoSelect Leukocyte

Transmigration assay (Cell Biolabs, Inc.). Human umbilical vein
endothelial cells (HUVEC; 1 � 105) were cultured in each of 24
transwell inserts for 24 hours. Antigen-specific CTLs labeled with
LeukoTracker dye were then placed into each inner well, in contact
with full serum media below. Cells that had migrated through the

Translational Relevance
Adoptive cellular therapy (ACT), including tumor-specific

cytotoxic T lymphocytes (CTLs) and chimeric antigen receptor
T cells, has shown promise in the treatment of a number of
malignancies. One limitation to ACT is the inadequacy of
immune cell homing to the tumor site. To overcome this
obstacle, we investigated the role of ex vivo fucosylation of
antigen-specific CTLs as a mechanism to boost CTL efficacy
against solid tumors and leukemia. Our results show that
ex vivo fucosylation of CTLs enhances their homing and cyto-
lytic machinery in the setting of breast cancer and leukemia.
These findings are highly valuable from a clinical perspective
because they identify a novel and simple approach to improve
the efficacy of ACT, circumventing the standard labor-
intensive and costly engineering methodologies to improve
the potency and homing of therapeutic T cells. Clinically,
fucosylation could prove to be a valuable tool to improve
ACT for cancer.
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membrane and into the media were lysed with specific lysis buffer,
and the fluorescence was measured with a plate reader at 480/520
nm (BioTek Cytation3).

CTL phenotypic analysis
CTLs (1.5 � 106) were stained for molecules that modulate

T-cell trafficking, including CD49d (clone 9F10; BioLegend),
CD162 (PSGL-1; clone KPL-1; BioLegend), CD183 (CXCR3; clone
1C6/CXCR3; BD Biosciences), and CD195 (CCR5; clone 2D7/
CCR; BD), as well as molecules involved in costimulation/inhi-
bition, including CD137 (41BB; clone 5F4; BioLegend), CD279
(PD1; clone EH12.2H7; BioLegend), and CD357 (GITR;
eBioAITR; eBioscience), within 2 hours after fucosylation. The
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Life Technologies)
was used to assess cell viability. Flow cytometry was done on live
cells using a BD LSR Fortessa, and data were analyzed using FlowJo
software (FlowJo).

CTL cytotoxicity assay
Antigen-specific CTLs were harvested on days 12 to 14 and

passed through a negative selection column (MACS Miltenyi
Biotec-CD8 T Cell Isolation Kit). Peptide-specific cytotoxicity
was assessed with a standard 4-hour calcein-AM release assay as
previously described (27, 36, 37). Target cells included peptide-
pulsed T2, SKBR3-A2 breast cancer cells, primary patient acute
myeloid leukemia (AML) cells, or U937-A2 leukemia cell line.
Target cells (1 � 103) were fluorescently labeled with calcein-AM
(Invitrogen) for 15 minutes at 37�C and washed with RPMI-1640
to remove free calcein-AM. These cells were seeded into 60-well
Tarasaki plates at indicated effector-to-target (E:T) ratios for 4
hours at 37�C. The reaction was quenched with trypan blue, and
fluorescence was measured using a microplate fluorescence reader
(BioTek Cytation3). The percent-specific cytotoxicity was calcu-
lated using the following formula: ([ 1 � fluoresencetarget þ effector �
fluoresencemedia] / [fluoresencetarget alone � fluoresencemedia ]) � 100.

In vivo mouse methods
NOD/SCID gamma (NSG) and NSG-HLA-A2 transgenic mice

(NSG-A2), 4- to 6-week-old female mice (28, 38), were purchased
from The Jackson Laboratory. For AML experiments, HLA-A�0201
primary AML samples with a high leukemia burden or U937-A2
(U937-A2þ/GFPþ) cells were administered via tail vein at doses of
1 � 106 to 1 � 107 cells to sublethally irradiated (250 cGy) mice.
Mice were monitored 2 times/week for AML engraftment by
peripheral blood analysis and GvHD by clinical assessment.
Fucosylated or nonfucosylated CG1- or PR1-CTLs (0.5 � 105;
refs. 28, 39) were administered to mice i.v. via tail vein 2 days after
leukemia injection. Mice were sacrificed on day 3 to evaluate CTL
homing and on week 2 to evaluate for tumor killing. Bone marrow
(BM) was stained with human (h)CD13, hCD33, hCD3, hCD8
(BD Biosciences), hCD45 (BioLegend), and mouse (m)CD45
antibodies (eBioscience), and assessed for GFP to quantify xeno-
graft disease and CTL homing into tumor (28, 40). Residual
AML was classified as hCD33þ/hCD45þ/mCD45�, and anti-
gen-specific CTLs were classified as hCD33�/hCD45þ/
mCD45�/hCD13�/hCD3þ/hCD8þ.

For breast cancer, 1.5 � 107 luciferase-expressing SKBR3-A2
breast cancer cells were injected into NSG mice orthotopically on
day 0. On days 7 and 10, fucosylated or nonfucosylated E75-CTLs
(2 � 106) were injected i.v. via tail vein. Mice were followed for
weight loss, tumor size, survival, and tumor bioluminescence

every 3 days. Mice were sacrificed on week 5, and tumor-infiltrat-
ing lymphocytes (TIL) were extracted from primary tumors using a
tumor dissociation kit (Miltenyl Biotec). TILs were stained with
the same panel used for BM samples in AML mice, and E75-CTLs
were classified as mCD45�/hCD45þ/ hCD3þ/ hCD8þ.

For melanoma, immunocompetent mouse model, provided by
Dr. Willem Overwijk, pmel-1 T-cell receptor (TCR) transgenic
mice on C57BL/6 background (The Jackson Laboratory) were
crossed with CD90.1 congenic mice to yield pmel-1þ/þCD90.1þ/

þ mice (referred to as pmel-1 mice; ref. 33). Splenocytes from
pmel-1 mice were extracted and then expanded using standard
protocol (33). Concurrently, 0.3 � 106 B16-F10 melanoma cells
(ATCC) were inoculated subcutaneously into C57BL/6 mice
(Charles River Laboratories). After 1 week of pmel-1 CD8þ T-cell
ex vivo expansion, tumor-bearing mice received i.v. tail-vein injec-
tion of 5 � 106 fucosylated or nonfucosylated Pmel-1 T cells
(day 0). Mice underwent i.p. injections of IL2 (0.1 � 106 IU/mice;
Prometheus Therapeutics & Diagnostics) twice daily for 2 days.
Mice were observed daily for tumor size, weight loss, and survival.
Mice were sacrificed on day 9, and TILs were enriched from
tumors, stained with mCD3, mCD4, mCD8 (BioLegend),
mCD45, CD90.1 (eBioscience), and Ghost Dye Violet 510
(Tonbo Biosciences), and were analyzed by flow cytometry.
Pmel-1 CD8þ T cells were identified as mCD3þ, mCD8þ,
mCD45þ, and CD90.1þ.

The experiments were executed in compliance with institution-
al guidelines and regulations and after approval from the MD
Anderson Cancer Center Institutional Animal Care and Use
Committee.

Activation and proliferation assays
CTL activation was analyzed by measuring the expression of Fas

ligand (FasL) perforin and granzyme B, as previously
described (41, 42). Fucosylated and nonfucosylated CTLs were
cocultured with T2 cells that were pulsed with E75, CG1, or PR1
(40 mg/mL) at a ratio of 1:1 overnight at 37�C. At the end of the
incubation period, the cells were stained with fluorescently con-
jugated antibodies targeting CD3, CD8, FasL (BioLegend), CLA,
and Ghost Dye Violet 510. After staining for cell surface markers,
cells were permeabilized and stained with fluorescently conju-
gated antibodies targeting granzyme B and perforin (BioLegend).
Staining was analyzed using flow cytometry (BD LSR Fortessa).

To test proliferation, we performed standard carboxyfluores-
cein succinimidyl ester (CFSE) assays. Briefly, fucosylated and
nonfucosylated CTLs were labeled with CFDA SE Cell tracer
reagent (Invitrogen) following the manufacturer's protocols. Cells
were cultured in 96-well round-bottom plates at a density of 0.3�
106 cells in RPMI þ 10% FBS in the presence or absence of anti-
CD3 and CD28 antibodies (BD Biosciences) to stimulate prolif-
eration. Cells were harvested on days 2, 4, and 5 and stained with
anti-CD8, anti-CD4 (BioLegend), and Ghost Dye Violet 510. Live
CD8þ/CD4� cells were gated on CFSE positivity, and percent
proliferation was calculated by gating on CD8þ cells and com-
paring the CFSEþ populations between samples.

Colony-forming unit assay
Fucosylated CTLs were cocultured with HLA-A2þ healthy

donor BM to determine the effects of fucosylation on CTL spec-
ificity. We used CG1- and PR1-CTLs as we have an established
in vitro model using colony-forming unit (CFU) assays with
normal donor BM hematopoietic stem cells (HSC) to test the
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specificity of these CTLs (28). Normal HSCs were thawed and
cultured for 24 hours in RPMI with 1% penicillin/streptomycin
(P/S). BM cells and CTLs were cocultured at a 1:5 ratio in RPMI
(10% FBSþ 1% P/S) for 4 hours in a 48-well plate. The incubated
cultures were resuspended in Iscove's Modified Dulbecco's Media
(IMDM) þ 2% FBS and added into settled MammoCultTM
H4034 Optimum Human Medium (STEMCELL Technologies).
These mixes were transferred to 6-well plates to incubate for 10 to
14 days. CFUs were imaged (Leica DMi8) and counted on day 14.
To confirm cell phenotype, wells were incubated at 4�C for 2
hours and washed with IMDM and PBS to prepare for antibody

staining. Cells were stained with fluorescently conjugated CD3,
CD4, CD8, CD14, CD16, CD19, CD33, CD34, and live/dead
Aqua (BD Biosciences).

Histology
To determine the effects of fucosylation on the specificity of

antigen-specific CTLs, mice were sublethally irradiated and on the
following day were treated with 2.5 � 106 antigen-specific CTLs,
and twice weekly. After 4 weeks, mouse tissues including spleen,
liver, kidney, BM, intestine, brain, heart, and lung were harvested
and fixed in 10% formalin. The fixed tissue samples were

Figure 1.
Fucosylation enhances CTL migration. CD8-enriched antigen-specific CTLs were fucosylated with FT-VII. Results show representative HECA-452 staining by flow
cytometry of (A) leukemia-specific CTLs and (B) breast cancer–specific CTLs. C, Fucosylated or nonfucosylated antigen-specific CTLs were passed through an
HUVEC barrier to assess functional alterations to transmigration. LeukoTracker fluorescence was measured in the postbarrier well. Relative fluorescence units
(RFU) are indicative of three independent experiments. Statistical testing was performed using unpaired t test (�, P < 0.05).
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embedded in paraffin, sectioned, and stained with hematoxylin
and eosin prior to histologic examination.

Immune synapse studies
T2 cells were pulsed with E75, PR1, and CG1 peptides

(40 mg/mL), washed and labeled with CellTracker Deep Red
Dye (Life Technologies, Thermo Fisher Scientific), and cocul-
tured with fucosylated and nonfucosylated CTLs at a 1:1 ratio at
37�C. Cells were then fixed in 2% paraformaldehyde, washed,
and stained with anti–CD8-FITC (BioLegend) to identify
CTLs. Following surface staining, cells were washed, per-
meabilized using 0.1% Triton-X (Sigma), and stained with
phalloidin AlexaFlour 594 (Life Technologies, Thermo Fisher)
to visualize actin filaments at the synapse between CTLs and
T2 cells. Data were collected on an imaging flow cytometer
(ImageStreamXMarkII, Millipore Sigma) and analyzed using
Ideas Software (Millipore Sigma).

Statistical analysis
Statistical analyses were performed using GraphPad Prism 7.0

software. P values less than 0.05 were considered significant.

Results
Fucosylated CTLs demonstrate enhanced endothelial
transmigration in vitro

Fucosylation of antigen specific-CTLs with FT-VII was verified
by staining cells with HECA-452 antibody, which targets CLA
(Fig. 1A and B; ref. 14). Nonfucosylated groups showed 0% CLAþ

CG1- and PR1-CTLs and 1.1% E75-CTLs, whereas CTLs incubated
with FT-VII showed 96.7%, 94.7%, and 99.5% CLAþ CG1-, PR1-,
and E75-CTLs, respectively.

Using a transwell assay, we showed that fucosylated CG1-,
PR1-, and E75-CTLs had increased ability to migrate through the
HUVEC barrier, as indicated by the increased cell count and
relative fluorescence in the lower chamber (Fig. 1C). Fucosylated
CTLs specific for CG1, PR1, and E75 had 1.7-, 1.3-, and 1.5-fold
increased migration, respectively, in comparison with nonfuco-
sylated CTLs (all P < 0.05).

Fucosylation alters the expression of CTL surface markers
Differences in cell surface marker expression after fucosylation

were determined by cell surface staining and flow cytometry
(Fig. 2). Fucosylated antigen-specific CTLs showed increased
surface expression of the trafficking molecule CD162/PSGL-1 and
CD183 (CXCR3), and the coregulatory molecule CD137
(41BB; Fig. 2).

Fucosylation enhances CTL cytotoxicity in vitro
To study the efficacy of fucosylated CTL-induced killing of

targets expressing cognate peptide-MHC, we utilized calcein-AM
assays at multiple E:T ratios. Fucosylated antigen-specific CTLs
demonstrated higher cytotoxicity against corresponding target
cells than nonfucosylated CTLs (Fig. 3). CG1-CTLs showed
increased killing of CG1 pulsed T2 cells and primary patient AML
samples (Fig. 3A; Supplementary Table S1). Similarly, fucosylated
PR1-CTLs had increased killing of PR1 peptide-pulsed T2 cells and
the U937-A2 AML cell line in comparison with nonfucosylated
PR1-CTLs (Fig. 3B). Likewise, fucosylation of E75-CTLs was
associated with significantly increased killing of E75 pulsed T2
cells and SKBR3-A2 breast cancer cells (Fig. 3C).

In addition, we studied the CTL cytolytic machinery after
fucosylation by analyzing the intracellular expression of gran-
zyme B and perforin, and surface expression of FasL, after
coculturing CTLs with peptide-pulsed targets. Data demon-
strate an increase in the percentage of CTLs expressing all three
markers after fucosylation (Supplementary Fig. S1). We also
investigated whether fucosylation enhances the binding of
CTLs to target cells by analyzing synapse formation between
CTLs and peptide-pulsed target cells (Supplementary Fig. S2).
Our data show that fucosylation enhances the frequency of
CTLs forming conjugates with target cells compared with non-
fucosylated CTLs.

Fucosylation enhances the efficacy and homing of antigen-
specific CTLs in vivo

The efficacy of antigen-specific CTLs was tested in vivo using
NSG xenograft mouse models for AML and breast cancer. Treat-
ment of patient AML- or SKBR3-A2–engrafted NSG mice with the
corresponding fucosylated antigen-specific CTLs resulted in a
decreased disease burden in comparison with nonfucosylated
antigen-specific CTLs (Fig. 4). Specifically, mice that received
fucosylated CG1-CTLs (n ¼ 12) showed significantly greater
inhibition of leukemia than mice that received nonfucosylated
CG1-CTLs (n ¼ 13; P < 0.05; Fig. 4A; Supplementary Table S1).
Similarly, treatment of the same patient primary AML-bearing
mice with fucosylated PR1-CTLs (n¼13) resulted in better disease
inhibition when compared with treatment with nonfucosylated
PR1-CTLs (n ¼ 13; P < 0.01; Fig. 4B). Similar results were also
obtained in the setting of breast cancer, where fucosylated E75-

Figure 2.
Fucosylation alters expression of select CTL surface markers. Fucosylated
antigen-specific CTLs were assessed for known trafficking and regulatory cell
surface molecules using flow cytometry. Fucosylation of antigen-specific
CTLs increased the cell surface expression of a number of trafficking
molecules. Cell surface expression of CD162 (PSGL-1, 1.7-fold) and CD137
(41BB, 3-fold) was significantly increased in comparison with nonfucosylated
CTLs. Results are representative of six independent experiments. Statistical
testing was performed using ANOVA (� , P < 0.05 and ���� , P < 0.0001).
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CTLs demonstrated significantly improved disease inhibition in
SKBR3-A2–engrafted mice (n¼6) compared with nonfucosylated
E75-CTLs (n ¼ 6; P < 0.05; Fig. 4C). Likewise, in the immuno-
competent C57BL/6 mouse model, mice treated with fucosylated
pmel-1 CD8þT cells (n¼9; Supplementary Fig. S3) demonstrated
a significant decrease in tumor volume growth (P < 0.05), in
comparison with mice treated with nonfucosylated pmel-1 CD8þ

T cells (n ¼ 8) and untreated mice (n ¼ 9; Fig. 4D).
These findings were corroborated by evidence of increased

homing of fucosylated antigen-specific CTLs into the leukemic

BM and tumor in comparison with nonfucosylated antigen-spe-
cific CTLs (Fig. 5). Frequencies of total live human CD3þ CG1-
CTLs in mouse BM (n ¼ 11) were significantly higher than for
nonfucosylated CG1-CTLs (n ¼ 10; P < 0.001; Fig. 5A). Fucosy-
lated E75-CTLs showed similar trends in homing to SKBR3-A2
primary tumors (n ¼ 15) when compared with nonfucosylated
E75-CTLs (n ¼ 13; P ¼ 0.05; Fig. 5B). These findings were also
confirmed in the immunocompetent C57BL/6 mice. Mice treated
with fucosylated pmel-1 CD8þ T cells demonstrated higher fre-
quencies of pmel-CD8þ T cells (live, mCD3þ mCD8þ, CD90.1þ)

A

B

C

Figure 3.
Fucosylation enhances targeted cytotoxicity in vitro. Antigen-specific CTLs were cocultured with cognate peptide-MHC–expressing target cells at varying E:T
ratios in a calcein-AM release cytotoxicity assay. Results are depicted as percent-specific lysis of target cells. CG1-CTLs (A) and PR1-CTLs (B) were cocultured
with T2 cells pulsed with corresponding peptide, patient AML (UPN#2), or U937-A2 cells. Similarly, C, E75-CTLs were cocultured with E75 peptide-pulsed
T2 cells or SKBR3-A2 cells at varying E:T ratios. Results are representative of three independent experiments. Statistics were obtained using unpaired t test
(� , P < 0.05; �� , P < 0.005; and ��� , P < 0.001).
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compared with mice that were treated with nonfucosylated pmel-
1 CD8þ T cells (P < 0.05; Fig. 5C).

CFSE assays showed that fucosylation does not affect CTL
proliferation (Supplementary Fig. S4); however, we acknowledge
that the in vitro proliferation assay does not conclusively exclude
an effect of fucosylation on CTL proliferation in vivo.

Fucosylated CTLs do not impair healthy HSC growth in vitro
CFU assays were used to verify that fucosylation does not

interfere with CTL specificity. We have an established normal
hematopoiesis model that tests the specificity of CG1- and PR1-
CTLs (26, 28). This model takes advantage of the fact that CG1 and
PR1 are both processed from azurophil granule proteases nor-
mally expressed by progenitor cells, although at lower levels than
what is found in leukemia (26–28, 40). We show that human
HLA-A2þ normal BM was not affected when cocultured with
fucosylated or nonfucosylated CG1- (Fig. 6A) or PR1-CTLs (Sup-
plementary Fig. S5). Nonfucosylated and fucosylated CG1-CTLs
cocultured with BM resulted in an average of 388 CFUs and 448
CFUs, respectively (not significant). The same conditions with
PR1-CTLs resulted in 140 and 137 CFUs, respectively (not sig-
nificant). BM cocultured with 1 mmol/L cytarabine was used as a
positive control. BM cocultured with leukemia-specific CTLs also
did not result in any significant differences in CFUs when com-

pared with BM cocultured with HIV-CTLs, an irrelevant control for
antigen specificity.

Fucosylation does not affect CTL homing into normal tissues
Fucosylation is believed to enhance the interaction of cell

surface–expressed selectin ligands with selectins, which are
expressed on tumor and endothelial tissues and are unregulated
during inflammatory states (6–10). To confirm that fucosylation
does not increase homing of CTLs to normal (i.e., noninflamed)
mouse tissues, we administered CG1-, PR1-, and E75-CTLs to
normal NSG and NSG-A2 transgenic mice. Histologic evaluation
of various tissues confirmed that fucosylation does not increase
the homing of antigen-specific CTLs to normal tissue (Fig. 6B).

Discussion
We have shown that fucosylation enhances the homing of

antigen-specific CTLs to malignant niches, resulting in increased
antitumor efficacy. Importantly, fucosylation does not increase
CTL homing to normal tissues. Furthermore, fucosylation
enhances CTL efficacy, in part by altering CTL trafficking, cytolytic
machinery, synapse formation, and expression of distinct activat-
ing surface molecules. Taken together, our data illustrate a novel,
robust, and simple approach to enhance CTL homing to

Figure 4.
Fucosylation enhances the efficacy of CG1-, PR1-, and E75-CTLs in vivo. Irradiated NSG mice were engrafted with primary patient AML UPN#1 (1 � 106 to 1 � 107

cells) on day 0. Fucosylated or nonfucosylated (A) CG1- or (B) PR1- CTLs were injected on day 2 (0.5 � 106). Mice were sacrificed and BM was harvested on week
2 and analyzed by flow cytometry. Results are expressed as percent hCD33þ/hCD45þ/mCD45� cells of total live cells in BM. C, For the breast cancer model,
irradiated NSG mice were engrafted with SKBR3-A2 (1.5 � 107 cells) in the mammary fat pad on day 0. Fucosylated or nonfucosylated E75-CTLs (2 � 106 cells)
were injected i.v. on days 7 and 10. Mice were sacrificed at week 5, and tumor sizes were measured using bioluminescence imaging. Results are expressed as
percent tumor size following treatment with CTLs in comparison with pretreatment tumor size. D, C57BL/6 mice were inoculated with B16-F10 melanoma cells
(0.3 � 106). Fucosylated or nonfucosylated expanded pmel-1 CD8þ T cells (5 � 106) were injected i.v. on day 0. Mice tumor volumes were measured daily for 9
days. Results are expressed as mean tumor size on day 9 from two separate experiments. Statistical testing was performed using ANOVA (�, P < 0.05 and
�� , P < 0.005).
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hematologic and solid tumor malignancies. In addition, our data
indicate ex vivo CTL fucosylation is an effective method to enhance
T-cell efficacy against tumor cells.

T-cell homing to tumor sites following adoptive transfer is
critical to achieve desired antitumor immune responses (43).
Leukocytes migrate to inflamed tissues via interactions between
T-cell ligands and specific molecules expressed by the tumor and
the endothelia. Most immunotherapeutic approaches have
focused on the expression of chemokines within the tumor tissues
and their cognate receptors by T cells. Numerous studies have
employed methodologies to virally transduce chemokine recep-
tors into effector cells to enhance homing. In one study by Garetto
and colleagues, the C-C chemokine receptor type 2 (CCR2) was
transduced into CD8þT cells that were specific for the SV40 large T
antigen (SV40Tag) in a murine prostate cancer mouse model that
expressed the chemokine (C-C motif) ligand 2 (CCL2; ref. 44).
Increased expression of CCR2 resulted in enhanced T-cell homing
and significantly improved antitumor activity. These data were
corroborated by Craddock and colleagues in a neuroblastoma
model using GD2-specific chimeric antigen receptor (CAR) T cells
retrovirally transduced with CCR2b (45). A similar approach was
employed using the chemokine (C-X-C motif) ligand 1 (CXCL1)
and its receptor CXCR2 (46). In that study, CXCR2 virally trans-
duced gp100 TCR transgenic T cells were adoptively transferred
into CXCL1-expressing melanoma-bearing mice. CXCR2-trans-
duced T cells showed increased migration and antitumor activity
following adoptive transfer.

Another approach to enhance T-cell homing focused on the
extracellular matrix (ECM) components of the tumor microen-
vironment, which can pose an impediment to the efficacy of the
antitumor immune response (47). Caruana and colleagues virally
transduced GD2-specific CAR T cells with the enzyme heparanase
(HPSE), which degrades heparan sulfate proteoglycans, a main
component of the subendothelial basement membrane (48). In
this neuroblastoma model, the investigators demonstrated
enhanced tumor infiltration and antitumor activity by the
HPSE-transduced CAR T cells. Collectively, these studies have
validated the potential to improve immunotherapy by modulat-
ing chemokine receptor- and ECM-degrading protease expression
by effector T cells. However, both approaches mandate prior
knowledge of the tumor microenvironment, including the che-

mokine milieu of the tumor, the ECM components, and the
expression of cognate receptors and proteases by the effector T
cells. Furthermore, these approaches require a viral transduction
step that could interfere with T-cell functions and add expense
and technical challenges.

Other methodologies to enhance the homing of CTLs to tumor
tissues have relied on the use of reagents that modulate the tumor
vasculature (49, 50). In a study by Calcinotto and colleagues, a
TNF-fusion protein, NGR-TNF, was utilized to increase T-cell
homing in mouse prostate and melanoma tumor models (49).
Administration of NGR-TNF altered the endothelial layer of the
tumor microvasculature, increased adhesion molecule expression
by endothelial cells, and increased cytokine and chemokine
release within the tumor microenvironment. Together, these
modifications enhanced the extravasation of immune cells to
tumors, resulting in reduced tumor burden. A similar result was
shown using angiogenesis inhibitors and paclitaxel, where treat-
ment of tumor-bearing mice with angiogenesis inhibitors
increased the leukocyte–endothelium interactions and expression
of endothelial cell adhesion molecules, and enhanced CD8þ CTL
infiltration of the tumor (50). However, one significant drawback
of treatment with angiogenesis inhibitors is that it requires an
intact host adaptive cellular immune system, including endoge-
nous antigen-specific CTLs that are capable of tumor elimination.
It is possible that the coadministration of angiogenesis inhibitors
with fucosylated antigen-specific CTLs could synergistically
enhance T-cell infiltration of tumor and further boost the anti-
tumor immune response.

Our study validates the novel approach of fucosylation to
enhance CTL homing and antitumor efficacy. Although the
changes in in vivo antitumor effects were small in some of our
experiments, this study provides a proof of principle for the
potential of fucosylation to enhance the efficacy of ACT for cancer.
This approach has broad implications for the field of cellular
immunotherapy for cancer. Vaccines are effective in the setting of
minimal tumor burden; however, for patients with metastatic
disease, the efficacy of vaccines is limited by the number of
antigen-specific CTLs that vaccination can generate, the TCR
avidity of vaccine-induced CTLs for the target antigen, the acti-
vation status of vaccine-induced CTLs, and the ability of CTLs to
home to tumor tissue (51). ACT approaches can address many of

Figure 5.
Fucosylation enhances CTL homing in vivo. Irradiated tumor-bearing NSG mice treated with fucosylated or nonfucosylated CTLs were analyzed for CTL homing
into tumor using flow cytometry. A, Results show percent of CG1-CTLs (hCD33�/hCD45þ/mCD45�/hCD13�/hCD3þ/hCD8þ) of total live cells in BM harvested
from leukemia-engrafted mice. B, Breast cancer–engrafted mice were sacrificed at week 5, and TILs were enriched from the tumors. Results show percentage of
E75-CTL (hCD45þ/ mCD45�/hCD3þ/ hCD8þ) of total live cells from TIL extraction. C, Melanoma-engrafted C57BL/6 mice were sacrificed on day 9, and TILs
were extracted from the primary tumor. Results show percentage of pmel-1 T cells (mCD45þ/mCD3þ/mCD8þ/CD90.1þ) of total live cells. Statistical testing was
performed using unpaired t test (� , P < 0.05 and ��� , P < 0.001).
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these shortcomings, including CTL number, TCR avidity, and CTL
activation status. However, methodologies to engineer and
expand CTLs are oftentimes hindered by the inadequate quantity
of resulting effector cells and by the scant tumor infiltration of the
adoptively transferred CTLs (45, 48). Furthermore, methodolo-
gies that drive T cells to acquire potent cytotoxic functions in vitro
can lead to the downregulation of lymphoid homing mole-
cules (52). Our approach, therefore, is highly clinically relevant
as it allows for the generation and infusion of fewer antigen-
specific CTLs with improved homing capabilities. In addition, our
simple fucosylation strategy involves a short incubation of effec-
tor T cells with an enzyme/substrate cocktail, which can be applied
rapidly to expanded/engineered cells. This approach was shown
to be safe in the setting of SCT and therefore can be rapidly

translated to the clinical setting for the treatment of hematologic
as well as solid tumor malignancies, and possibly to CAR-T cell
therapies.
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